

Chapter 5 Congruent Triangles

- 5.1 Angles of Triangles
- 5.2 Congruent Polygons
- 5.3 Proving Triangle Congruence by SAS
- 5.4 Equilateral and Isosceles Triangles
- 5.5 Proving Triangle Congruence by SSS
- 5.6 Proving Triangle Congruence by ASA and AAS
- 5.7 Using Congruent Triangles
- 5.8 Coordinate Proof (skip)

Base

5.4 Equilateral and Isosceles Triangles

Theorems

Base Angles
TheoremIf two sides of a triangle are congruent,
then the angles opposite them are
congruent.

Converse of the Base Angles Theorem

If two angles of a triangle are congruent, then the sides opposite them are congruent.

If $\overline{AB} \cong \overline{AC}$, then $\angle B \cong \angle C$.

If $\angle B \cong \angle C$, then $\overline{AB} \cong \overline{AC}$.

1. If $\overline{HG} \cong \overline{HK}$, then $\angle _ \cong \angle _$.

2. If $\angle KHJ \cong \angle KJH$, then ____ \cong ____.

5.4 Equilateral and Isosceles Triangles

Theorems

Corollary to Base Angles Theorem If a triangle is equilateral, then it is equiangular.

Corollary to the Converse of the Base Angles Theorem

If a triangle is equiangular, then it is equilateral.

